
R and Stata Side-by-Side
Basic Commands and Processes

Created: August 2013

Author:
Richard Blissett

Author:
Benjamin Skinner

Department of Leadership, Policy
& Organizations

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

Contents

1) Beginning the Work File 2
1.1 Commenting. 2
1.2 Set Working Directory . 2
1.3 Open a New Log . 2
1.4 Clear Memory/Set Preferences . 3
1.5 Installing/Loading Libraries & Packages . 3

2) Reading and Viewing Data 4
2.1 Reading Data . 4
2.2 Viewing Data . 4

3) Manipulating Data 4
3.1 Keeping & Dropping Variables . 4
3.2 Summarizing Variables . 5
3.3 Recoding Variables . 5
3.4 Creating Variables . 5
3.5 Coded Missing Data . 6

4) Programming Logic 7
4.1 And/Or . 7
4.2 While . 7
4.3 For/Forvalues . 8
4.4 Lapply/Foreach (with Locals) . 8

5) Visualizing Data 9
5.1 Graphs . 9

6) Regression 9
6.1 OLS . 9
6.2 Logistic . 9

7) Output 10
7.1 Descriptive Table . 10
7.2 Regression Table . 10
7.3 Graphs . 11

A) Full Side-by-side Code 12

R. BLISSETT & B. SKINNER (1) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

1) Beginning the Work File

1.1 Commenting

It is important to annotate your code. This is for the benefit of others who will be reading your code as well as for yourself, as it’s often difficult to keep track of
what your code is doing. Comments are preceded by special characters, which indicate to the program that the comments are not to be evaluated as instructions.
Comments will be used throughout this document to explain language-specific details.

R Stata

This is a comment * This is a comment
/* This is also a comment */
// This, too, is a comment

1.2 Set Working Directory

Your statistical package needs to know where your files are in order to access them. It also needs a location to store your output should you save any. While it is
possible to link to different locations throughout the file, it is a practice not recommended, especially if you are collaborating. Put all of your projects files—data,
program file, output—in one folder.

R Stata

setwd("~/working/directory/location") # For OSX cd "~/working/directory/location" // OS X
setwd("C:/Users/You/working/directory/location") # For Windows cd "C:/Users/You/working/directory/location" // PC

1.3 Open a New Log

A log file is record of the input/output from the file that you run. This can be a useful diagnostic tool when some bit of code doesn’t seem to be working or the file
crashes entirely. In addition, saving new log files after making substantial changes to code essentially saves a history of your work such that you have files to refer to
should you feel the need to revert to a previous code version.

R Stata

Strictly speaking, R does not have a simple way to store log
files that contain both the code and code output. However, the
two functions below will give you the same information.
Save command history (all of the code that you ran, goes at the

R. BLISSETT & B. SKINNER (2) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

end of the code) // Opens log file (goes at beginning of code)
savehistory(file="myhistory.Rhistory") capture log using "projectname.log", replace
Save output to a file (goes at the beginning of the code) // Closes the current log file (goes at end of code)
sink(file="myoutput.txt") log close

1.4 Clear Memory/Set Preferences

Because EVERYTHING in R is an object, clearing your workspace only requires you to clear all of the objects in your workspace. Since Stata has more automated
features/preferences, you have to clear/(re)set more options.

R Stata

The ls() function returns a list of all objects, and the rm() // Clear everything in memory: data, graphs, matrices,
command removes them. // labels, etc.
rm(list=ls()) clear all

1.5 Installing/Loading Libraries & Packages

Packages consist of commands/functions (plus associated help files). The base installations of R and Stata both come with a standard set of packages, but there are
many others written by users that can be downloaded from the internet to extend the functionality of your statistical software. You only need to install the package
one time; once installed, it is on your computer. The key difference is that to use the package in R, you need to load its library in your file before the command will
work. Once you have the package in Stata, the command is now available like any other command without any extra steps.

R Stata

Download the package from the internet // Get list of possible installations
install.packages("xtable") net search estout
Load the package for use // Or, direct installation
library(xtable) ssc install sutex

R. BLISSETT & B. SKINNER (3) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

2) Reading and Viewing Data

2.1 Reading Data

Data must be read into the statistical software in a way that the latter understands. R stores the data in an object; therefore, R can hold multiple datasets in memory
at the same time. Stata, on the other hand, can only access/hold one dataset at a time.

R Stata

Reads in the dataset. Other commands exist for other file types. // Must clear other dataset that may be in memory
d <- read.csv("plans.csv") use plans, clear
Makes this dataset the "primary" dataset
attach(d)

2.2 Viewing Data

Raw data and information about your dataset as a whole can be viewed in a number of ways depending on what information you want. Both R and Stata have
commands to view your dataset in a spreadsheet format. Both have the ability to edit data in this way as well: DON’T!

R Stata

names(d) # see list of variable names describe // general info about data
View(d) # open spreadsheet of dataset browse // open spreadsheet of dataset

3) Manipulating Data

3.1 Keeping & Dropping Variables

Sometimes predefined datasets have more variables than you need for your project. Rather than trying to keep and re-load overly large datasets, which can slow your
computer, you should drop unnecessary variables. You can go about this in two ways, either keeping what you want or dropping what you don’t.

R Stata

Copy a subset of the data, with these variables, into a new object // Keep only what you want...
newd <- d[c("byses1", "byses2", "bynels2m", "bynels2r")] keep byses1 byses2 bynels2m bynels2r
Overwrite copy with full original data

R. BLISSETT & B. SKINNER (4) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

newd <- d
Refer to all variables using the $ symbol. If only using one
dataset, this can be avoided by using attach() on the dataset
object so that you don’t have to reference it anymore. // Or, drop whatever you don’t want...
Remember to reattach the data if you modify it. use plans, clear // need to reload dataset
newd$bynels2m <- NULL # drop by making null drop by*

3.2 Summarizing Variables

Before you do anything to a variable or begin analyzing your data, it’s a good idea to know about your variables: mean, min, max, etc.

R Stata

summary(bysex) tab bysex

3.3 Recoding Variables

Sometimes you might want to recode your variable. For instance, your data may code sex so that male = 1 and female = 2, but you think that it makes more sense
to have males = 0 and females = 1. Recoding allows you to change this. Note that missing values are denoted by NA in R and by . and the empty string in Stata.

R Stata

This is the raw way to do it - the revalue() function in the plyr // Recode and label
package is much cleaner recode bysex (1 = 0) (2 = 1) // order matters here
d$bysex[d$bysex==-8|d$bysex==-4] <- NA label define sex 0 "Male"
d$bysex[d$bysex==1] <- 0 label define sex 1 "Female", add
d$bysex[d$bysex==2] <- 1 label values bysex sex

3.4 Creating Variables

Your dataset may not contain a variable that you need for your analysis, but often you can create a new variable to meet your needs. For example, you may know
the number of men and the number of women in the dataset, but need the total population. Simply creating a new variable that is the sum of the other two is what
you need to do. Since data is sacrosanct (NEVER manually modify values), you can transform or modify existing variables in your code and create new variables as
well.

Some common rules/guidelines for variable names: don’t start them with a number, keep them to a reasonable length, keep a consistent capitalization style, don’t use
common programming words (like “sum"), and make names easily interpretable.

R. BLISSETT & B. SKINNER (5) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

In the examples below, bynsels2m and bynels2r are math and reading scores, respectively.

R Stata

test <- bynels2m + bynels2r generate test = bynels2m + bynels2r
avtest <- test / 2 generate avtest = test / 2
zavtest_magic <- (avtest - 36.72297) / 12.17733 generate zavtest_magic = (avtest - 36.72297) / 12.17733

You may notice that both examples above make use of “magic numbers,” i.e. numbers that were hard-coded into the file in order to create a new combined test z-score.
Magic numbers, because they are entered by hand, encourage mistakes and are generally discouraged in programming. They will also need to be changed again should
any of your values change or if you add additional observations. A better solution is below:

R Stata

The mean() and sd() functions calculate means and standard sum avtest
deviations, respectively return list // list of locals stored in memory after sum command
zavtest = (avtest-mean(na.omit(avtest)))/sd(na.omit(avtest)) generate zavtest = (avtest - r(mean)) / r(sd)

Note that R does not automatically exclude missing values from
analysis. Use the na.omit() to specify the subset of data that
does not include missing data.

3.5 Coded Missing Data

Your datasets will contain observations with coded missing data. This is different from data that are simply missing. Instead, the makers of the dataset have given
non-responses a nonsensical value that would never normally arise. If you do not take these values into account, however, you may mistakenly create variables or use
values that have been influenced by these numbers. Mean values are one such example.

R Stata

hist(bynels2m) # note ‘fake’ values hist bynels2m // note ‘fake’ values
bynels2m[bynels2m==-8] <- NA replace bynels2m = . if bynels2m == -8
bynels2m[bynels2r==-8] <- NA replace bynels2r = . if bynels2r == -8
avtest2 = (bynels2m + bynels2r) / 2 generate avtest2 = (bynels2m + bynels2r) / 2
zavtest2 = ((avtest2 - mean(na.omit(avtest2))) sum avtest2 // sum to put locals in memory

/ sd(na.omit(avtest2))) generate zavtest2 = (avtest2 - r(mean)) / r(sd)

Compare mean values of prior and new variable /* Compare mean values of prior and new variable */
summary(zavtest) sum zavtest
summary(na.omit(zavtest2)) # OR do... sum zavtest2

R. BLISSETT & B. SKINNER (6) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

summary(zavtest2, na.rm=T)

NB: R does not automatically exclude missing values from analysis.
Use the na.omit() to specify the subset of data that does not
include missing data.

4) Programming Logic

4.1 And/Or

In both R and Stata, & is used for AND statements and | (a pipe) is used for OR statements. They may be combine in various combinations, but be careful to use
parentheses as necessary so that the logic follows exactly what you intend.

R Stata

AND // AND
summary(avtest2[bysex==1 & byrace==3]) sum avtest2 if bysex == 1 & byrace == 3
OR // OR
summary(avtest2[bysex==1 | byrace==3]) sum avtest2 if bysex == 1 | byrace == 3

4.2 While

The while command is commonly used for creating loops that iterate a set number of times (though the condition can be anything that moves from one position to
another). The condition of the while loop must be something that will eventually be untrue (or true) inside of the loop, or else you will end up with an infinite loop.

R Stata

i <- 1 local i = 1
while(i<=10) { while ‘i’ <= 10 {

print(paste0("Now on iteration ", i)) di "Now on iteration ‘i’"
i <- i + 1 local i = ‘i’ + 1

} }

R. BLISSETT & B. SKINNER (7) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

4.3 For/Forvalues

The for and forvalues (in Stata) commands are like the while command, but require fewer lines since the counter is, in a sense, built into the command structure.
Unless you have a compelling reason to use a while command, these are just as useful for most tasks in R and Stata.

R Stata

for(i in 1:10) { forvalues i = 1/10 {
print(paste0("Now on iteration ", i)) di "Now on iteration ‘i’"

} }

4.4 Lapply/Foreach (with Locals)

foreach loops are a subset of the FOR command used by Stata. They are useful for running through a list of variables. This can also be done using the for()
function in R, combined with the list() function, but the lapply() function is preferred and is more efficient.

Stata is able to hold information in two ways other than generated variables. First, data may be stored temporarily in locals. Stata will hold the values in memory only
as long as the work file/command/function runs; it will delete them after that. They are useful for storing information that may change (such as a list of variables).
Properly set up, locals will allow you to make only one change to your work file that will propagate throughout the rest. Scalars in Stata hold numerical values only.
They remain until memory is cleared (i.e. Stata is closed). R, due to its different logic, does not make use of locals.

R Stata

varlist <- list(bysex, byrace, bymothed, byfathed, byincome) foreach var in bysex byrace bymothed byfathed byincome {
lapply(varlist, summary) sum ‘var’ if ‘var’ > 0

}

local demo bysex byrace bymothed byfathed bystincome

foreach var of local demo { // same as above
sum ‘var’ if ‘var’ > 0

}

R. BLISSETT & B. SKINNER (8) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

5) Visualizing Data

5.1 Graphs

There are many different graphics you can produce in R and Stata. These are just a few. Also, graphics in both languages can be extensively customized. Getting
exactly what you want takes much practice and patience.

R Stata

hist(avtest2) hist avtest2
plot(bynels2m, bynels2r) scatter bynels2m bynels2r)

6) Regression

6.1 OLS

The practical difference between R and Stata in terms of regression is that whereas Stata displays most information without intermediate steps, R does not. To see
regression output in R, you must ask the program to explicitly display it.

R Stata

When operations are stored in objects in R, it by default does not
display the results of the operation. To store the results AND
show them, just wrap the entire line in parentheses.

(model1 <- lm(bynels2m ~ byses1)) regress bynels2m byses1
summary(model1)

6.2 Logistic

Other regression models in R and Stata may be run. A logistical regression example is given below.

R Stata

glm(formula = bysex ~ byses1, family=binomial(logit), data=d) logit bysex byses1

R. BLISSETT & B. SKINNER (9) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

7) Output

The output in this document is produced in LaTeX format. However, similar output can be produced in rtf (Word-compatible) and csv (Excel-compatible) formats
as well.

7.1 Descriptive Table

With a little effort, both R and Stata can produce useful descriptive tables. With more effort, they can be very professional looking. The two examples below are
rough around the edges, but give two good examples of what is possible. Know that there are many other ways to create descriptive tables. Also note that each
command below only produces the LaTeX code for the table; you will need to paste that code into a full document in order for the table to generate.

R Stata

Attach data // Need to install sutex
attach(d) ssc install sutex
Store summaries of score variables // Create table
mathsum <- summary(bynels2m) sutex bynels2m bynels2r, minmax ///
readsum <- summary(bynels2r) title("Math and Reading Summary") ///
Glue them together file(sumtable_stata.tex) ///
sumtable <- cbind(mathsum, readsum) replace
Change the column names
colnames(sumtable) <- c("Math Summary", "Read Summary")
Load xtable library
library(xtable)
Create xtable object
textble <- xtable(sumtable, caption="Math and Reading Summary")
Output to file
print.xtable(textble, type="latex", file="sumtable_r.tex",

append=FALSE, caption.placement="top")

7.2 Regression Table

Professional-looking regression tables can also be produced with a little practice. As with the descriptive table examples, the two below might need a bit more polish
before public consumption.

R Stata

R. BLISSETT & B. SKINNER (10) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

library(texreg) eststo: reg bynels2m byses1 // store model 1
model1 <- lm(bynels2m ~ byses1) # store model 1 eststo: reg bynels2m byses1 bynels2r // store model 2
model2 <- lm(bynels2m ~ byses1 + bynels2r) # store model 2 esttab est* using "mathreg.tex", ///
Output to file b(2) ///
regt1 <- texreg(list(model1, model2), file="mathreg.tex") se(2) ///

width(\linewidth) ///
booktabs ///
page ///
replace

7.3 Graphs

When printing a graph, make sure you know its ultimate use (print or screen) and size. Two basic file types are available for your figures: raster/bitmap (e.g. jpg, jpeg,
gif) and vector (e.g. eps, pdf). Unless you have a compelling reason to use raster images, save and export your graphs as vector files. They are scalable, meaning that
you won’t loss image quality as the you increase the image size. The tradeoff is that vector files tend to be larger, as they have more information, and can sometimes
be slower to load.

R Stata

pdf("math.pdf") hist bynels2m, name(math)
hist(bynels2m) graph export math.pdf, name(math) replace
dev.off()

R. BLISSETT & B. SKINNER (11) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

A) Full Side-by-side Code

Below is the full code taken from the sections above. Each side should run from top to bottom in its respective software package.

R Stata

START WORK FILE ### /* START WORK FILE **/

NB: This is a comment * NB: This is a comment
/* NB: This is also a comment */
// NB: This, too, is a comment

set working directory // set working directory
setwd("~/working/directory/location") # For OSX cd "~/working/directory/location" // OS X
setwd("C:/Users/You/working/directory/location") # For Windows cd "C:/Users/You/working/directory/location" // PC

save results // opens log file
sink(file="myoutput.txt") capture log using "projectname.log", replace

clear memory // clear memory
rm(list=ls()) clear all

download the package from the internet (first time only) // get list of possible installations (first time only)
install.packages("xtable") # comment out in subsequent runs net search estout

// or, direct installation (first time only)
load the package for use ssc install estout
library(xtable)

READING/VIEWING DATA ## /* READING/VIEWING DATA ***/

read in the dataset // read in dataset (must clear other data in memory)
d <- read.csv("plans.csv") use plans, clear

make this dataset the "primary" dataset in memory
attach(d)

see list of variable names // list of variable names and other info
names(d) describe

R. BLISSETT & B. SKINNER (12) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

open spreadsheet of dataset // open spreadsheet of dataset
View(d) browse

MANIPULATING DATA ### /* MANIPULATING DATA **/

copy a subset of the data into a new object // keep only what you want...
newd <- d[c("byses1", "byses2", "bynels2m", "bynels2r")] keep byses1 byses2 bynels2m bynels2r

overwrite copy with full original data
newd <- d

// or, drop whatever you don’t want
drop variable by making it NULL use plans, clear // need to reload dataset
newd$bynels2m <- NULL drop by*

summarize variable // summarize variable (table format)
summary(bysex) use plans, clear // need to reload dataset

tab bysex
summarize variable as factor
summary(factor(bysex))

recode variables // recode and label variables
d$bysex[d$bysex==-8|d$bysex==-4] <- NA recode bysex (1 = 0) (2 = 1) // order matters here
d$bysex[d$bysex==1] <- 0 label define sex 0 "Male"
d$bysex[d$bysex==2] <- 1 label define sex 1 "Female", add

label values bysex sex
label values
d$bysex <- factor(d$bysex,

levels=c(0, 1),
labels=c("Male", "Female"))

create new variables // create new variables
d$test <- d$bynels2m + d$bynels2r generate test = bynels2m + bynels2r
d$avtest <- d$test / 2 generate avtest = test / 2
d$zavtest_magic <- (d$avtest - 36.72297) / 12.17733 generate zavtest_magic = (avtest - 36.72297) / 12.17733

better way... // a better way...
d$zavtest = (d$avtest-mean(na.omit(d$avtest)))/sd(na.omit(d$avtest)) sum avtest

return list // list of locals stored in memory after sum command

R. BLISSETT & B. SKINNER (13) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

generate zavtest = (avtest - r(mean)) / r(sd)

recode coded missing values // recode coded missing values
hist(d$bynels2m) # note ‘fake’ values hist bynels2m // note ‘fake’ values
d$bynels2m[d$bynels2m==-8] <- NA replace bynels2m = . if bynels2m == -8
d$bynels2m[d$bynels2r==-8] <- NA replace bynels2r = . if bynels2r == -8
d$avtest2 = (d$bynels2m + d$bynels2r) / 2 generate avtest2 = (bynels2m + bynels2r) / 2
d$zavtest2 = ((d$avtest2 - mean(na.omit(d$avtest2))) sum avtest2 // sum to put locals in memory

/ sd(na.omit(d$avtest2))) generate zavtest2 = (avtest2 - r(mean)) / r(sd)

reattach data
attach(d)

compare mean values of prior and new variable /* compare mean values of prior and new variable */
summary(zavtest) sum zavtest
summary(na.omit(zavtest2)) # OR do... sum zavtest2
summary(zavtest2, na.rm=T)

LOGIC ### /* LOGIC **/

AND // AND
summary(avtest2[bysex==1 & byrace==3]) sum avtest2 if bysex == 1 & byrace == 3

OR // OR
summary(avtest2[bysex==1 | byrace==3]) sum avtest2 if bysex == 1 | byrace == 3

WHILE // WHILE
i <- 1 local i = 1
while(i<=10) { while ‘i’ <= 10 {

print(paste0("Now on iteration ", i)) di "Now on iteration ‘i’"
i <- i + 1 local i = ‘i’ + 1

} }

FOR // FORVALUES
for(i in 1:10) { forvalues i = 1/10 {

print(paste0("Now on iteration ", i)) di "Now on iteration ‘i’"
} }

LAPPLY // FOREACH

R. BLISSETT & B. SKINNER (14) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

varlist <- list(bysex, byrace, bymothed, byfathed, byincome) foreach var in bysex byrace bymothed byfathed byincome {
lapply(varlist, summary) sum ‘var’ if ‘var’ > 0

}

// ...with locals

local demo bysex byrace bymothed byfathed byincome
foreach var of local demo { // same as above

sum ‘var’ if ‘var’ > 0
}

VISUALIZING DATA ## /* VISUALIZING DATA ***/

histogram // histogram
hist(avtest2) hist avtest2

two-way scatterplot // two-way scatterplot
plot(bynels2m, bynels2r) scatter bynels2m bynels2r)

REGRESSION ## /* REGRESSION ***/

linear // linear
(model1 <- lm(bynels2m ~ byses1)) regress bynels2m byses1
summary(model1)

logistic // logistic
glm(formula = bysex ~ byses1, family=binomial(logit), data=d) logit bysex byses1

OUTPUT ## /* OUTPUT ***/

Descriptive table // Descriptive table

store summaries of score variables // create table
mathsum <- summary(na.omit(bynels2m)) sutex bynels2m bynels2r, minmax ///
readsum <- summary(na.omit(bynels2r)) title("Math and Reading Summary") ///
glue them together file(sumtable_stata.tex) ///
sumtable <- cbind(mathsum, readsum) replace
change the column names
colnames(sumtable) <- c("Math Summary", "Read Summary")

R. BLISSETT & B. SKINNER (15) CREATED: AUGUST 2013

R AND STATA SIDE-BY-SIDE DEPT. OF LEADERSHIP, POLICY, & ORGANIZATIONS, PEABODY COLLEGE, VANDERBILT UNIVERSITY

load xtable library
library(xtable)
create xtable object
textble <- xtable(sumtable, caption="Math and Reading Summary")
output to file
print.xtable(textble, type="latex", file="sumtable_r.tex",

append=FALSE, caption.placement="top")

Regression table // Regression table

load texreg library
library(texreg)

store models // store models
model1 <- lm(bynels2m ~ byses1) eststo: reg bynels2m byses1 // store model 1
model2 <- lm(bynels2m ~ byses1 + bynels2r) eststo: reg bynels2m byses1 bynels2r // store model 2

output to file // output to file
regt1 <- texreg(list(model1, model2), file="mathreg_r.tex") esttab est* using "mathreg_stata.tex", ///

b(2) ///
se(2) ///
width(\linewidth) ///
booktabs ///
page ///
replace

Graphs // Graphs

pdf("math_r.pdf") hist bynels2m, name(math)
hist(bynels2m) graph export math_stata.pdf, name(math) replace
dev.off()

CLOSE WORK FILE ### /* CLOSE WORK FILE **/

savehistory(file="myhistory.Rhistory") # save commands log close
sink() # end sinking exit

R. BLISSETT & B. SKINNER (16) CREATED: AUGUST 2013

